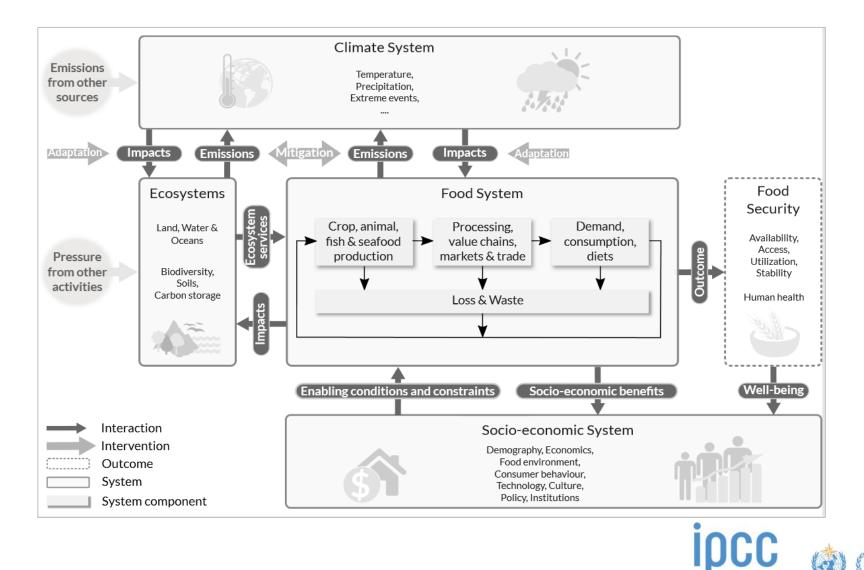
Special Report on Climate Change and Land Food Security Findings

Agricultural landscape between Ankara and Hattusha, Anatolia, Turkey (40°00' N - 33°35' E) ©Yann Arthus-Bertrand | www.yannarthusbertrand.org | www.goodplanet.org

Cynthia Rosenzweig **NASA Goddard Institute for Space Studies UN DESA Population Division September 16, 2019**



INTERGOVERNMENTAL PANEL ON Climate change

www.ipcc.ch/report/SRCCL

The Food System

INTERGOVERNMENTAL PANEL ON Climate change

WMO

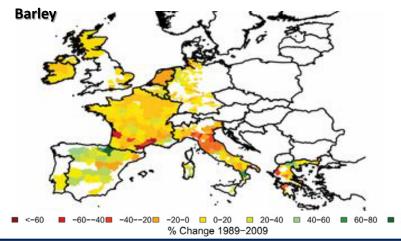
Why the Food System?

21-37% of all anthropogenic emissions from food systems (medium confidence) [A3.6]

Projected to increase by about 30–40% by 2050 (high confidence) [A3.6] Climate change creates additional stresses on the food systems (high confidence) [A5]

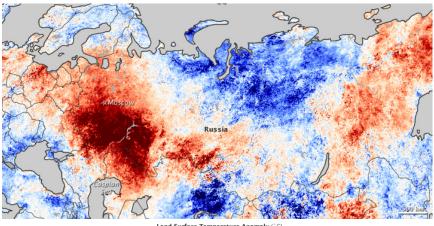
At 2°C the risk of food system instability is very high (medium confidence) [A5.1]

Integrated supply- and demand-side options can be scaled up in all segments of the food system to advance adaptation and mitigation climate responses (high confidence) [A5.1]


Diversification in the food system can reduce risks from climate change (medium confidence) [B6.2]

Dietary changes can ease the economic burdens of ill health caused by malnutrition (medium confidence) [D2.3]

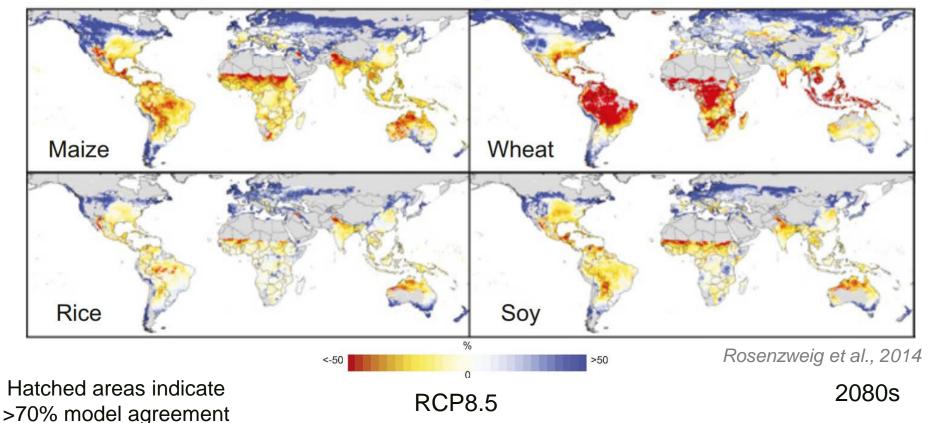
Importance of integrated policies operating across the food system [C2]


Food System Vulnerabilities - Observed

Availability – Decreases in wheat and barley yields in Southern Europe. *Moore and Lobell, 2015*

Utilization – Reduced quality of apples in Japan due to exposure to higher temperatures. *Sugiura et al 2013. Image: LA Times*

Land Surface Temperature Anomaly (C)


Access – 2010-2011 global food price spike, triggered by heatwave in Eastern Europe/Russia Hoag 2014, Watanabe et al 2013, Barriopedro et al 2011. Image: NASA

Stability – 2010 extreme rainfall/flooding in Pakistan led to massive loss of food reserves *Kirsch et al 2012, WFP 2010. Image: Kevin Frayer/AP*

Food System Vulnerabilities - Projected

GGCMs with explicit N stress

median of 4 GGCMs and 5 GCMs/AgMIP led agricultural contribution to ISIMIP

Lower latitudes: more vulnerable to climate change, especially under N stress

Mid- and high-latitudes: small benefits at moderate-to-medium Temp increase (1-3 C)

Role of Diets

Food security requires diets for a healthy life - ensuring healthy diets has both adaptation and mitigation benefits

Diets for a healthy life	Grains, legumes, fruits and vegetables, nuts and seeds, and animal-sourced food produced in low-GHG emission systems [B6.2, 5.5]	Opportunities for adaptation and mitigation while generating co-benefits in terms of human health (high confidence) [D2.3, 5.6]
Mitigation potential	Technical: 0.7-8.0 GtCO ₂ eq/yr by 2050 Economic: 1.8-3.4 GtCO ₂ eq/yr by 2050 at prices ranging from 20-100 USD/tCO ₂ [B6, 5.5]	Dietary changes can ease the economic burdens of ill health caused by malnutrition and allow redirection of revenues to sustainable intensification and sustainable land management practices (medium confidence) [D.2.3, 5.5]
Co-benefits	Human health, such as reduced risks of coronary heart disease, some forms of cancer and Type II diabetes (medium confidence) [D2.3, 5.7]	

Role of Food Loss and Waste

Definition: The decrease in quantity or quality of food. Food waste is part of food loss and refers to discarding or alternative (non-food) use of food that is safe and nutritious for human consumption along the entire food supply chain, from primary production to end household consumer level. Food waste is recognised as a distinct part of food loss because the drivers that generate it and the solutions to it are different from those of food losses

Reducing food loss and waste is directly relevant to food security

Reduction of loss and waste can support both adaptation and mitigation

Different contexts in different countries must be considered

Food Systems and Bioenergy/Carbon Capture and Storage

Response options based on land management Mitigation Adaptation Desertification Land Degradation Food Security Cost Bioenergy and BECCS * There will be fewer adverse side-effects and some If applied on a limited share of total positive co-benefits (e.g., salinity control, biodiversity, land and integrated into sustainably reduced eutrophication, increased soil carbon) can be managed landscapes [B3.2] realised (high confidence). [B.3, 5.5] Could lead to adverse side effects for adaptation, Some BECCS can increase demand for desertification, land degradation and food security (high confidence). [B.3, 5.5] land conversion at a scale of several millions of km² globally (high Compromise sustainable development with increased confidence) [B3.2] risks for desertification, land degradation and food

INTERGOVERNMENTAL PANEL ON Climate change

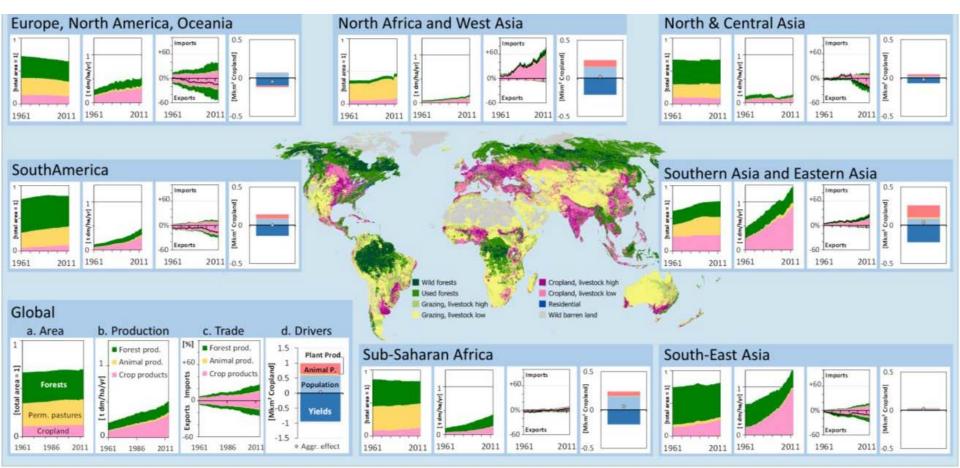
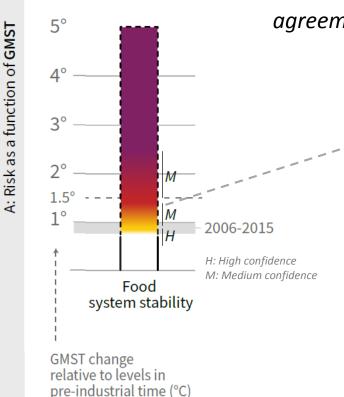

security (medium confidence). [B3.2]

Figure SPM3

Regional Aspects


Figure 1.3

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Food System Instability

Stability of food supply is expected to decrease (*high* agreement, medium evidence) \rightarrow Extreme events, trade

Articles assessed: 22

Transition to high risk: particularly for food import reliant countries and regions

Linkages: GDP, price spikes, social tension, poverty, migration

Threshold Guidelines:

Moderate (yellow): up to 1 million people High (red): up to 100 million people Very High (purple): more than 100 million people

Thank You

Special Report on Climate Change and Land Food Security Chapter

Agricultural landscape between Ankara and Hattusha, Anatolia, Turkey (40°00' N – 33°35' E) ©Yann Arthus-Bertrand | www.yannarthusbertrand.org | www.goodplanet.org

Cynthia Rosenzweig NASA Goddard Institute for Space Studies UN DESA Population Division September 16, 2019

INTERGOVERNMENTAL PANEL ON Climate change

www.ipcc.ch/report/SRCCL